Mechanisms of the Tropical Upwelling Branch of the Brewer–Dobson Circulation: The Role of Extratropical Waves
نویسندگان
چکیده
The role of extratropical waves in the tropical upwelling branch of the Brewer–Dobson circulation is investigated in an idealized model of the stratosphere and troposphere. To simulate different stratospheric seasonal cycles of planetary waves in the two hemispheres, seasonally varying radiative heating is imposed only in the stratosphere, and surface topographic forcing is prescribed only in the Northern Hemisphere (NH). A zonally symmetric version of the same model is used to diagnose the effects of different wavenumbers and different regions of the total forcing on tropical stratospheric upwelling. The simple configuration can simulate a reasonable seasonal cycle of the tropical upwelling in the lower stratosphere with a stronger amplitude in January (NH midwinter) than in July (NH midsummer), as in the observations. It is shown that the seasonal cycle of stratospheric planetary waves and tropical upwelling responds nonlinearly to the strength of the tropospheric forcing, with a midwinter maximum under strong NH-like tropospheric forcing and double peaks in the fall and spring under weak Southern Hemisphere (SH)-like forcing. The planetary wave component of the total forcing can approximately reproduce the seasonal cycle of tropical stratospheric upwelling in the zonally symmetric model. The zonally symmetric model further demonstrates that the planetary wave forcing in the winter tropical and subtropical stratosphere contributes most to the seasonal cycle of tropical stratospheric upwelling, rather than the high-latitude wave forcing. This suggests that the planetary wave forcing, prescribed mostly in the extratropics in the model, has to propagate equatorward into the subtropical latitudes to induce sufficient tropical upwelling. Another interesting finding is that the planetary waves in the summer lower stratosphere can drive a shallow residual circulation rising in the subtropics and subsiding in the extratropics.
منابع مشابه
An Observational Study on the Latitudes Where Wave Forcing Drives Brewer–Dobson Upwelling
The 40-yr ECMWF Re-Analysis (ERA-40) data are analyzed to demonstrate that wave forcing at lower latitudes plays a crucial role in driving the tropical upwelling portion of the Brewer–Dobson circulation. It is shown that subtropical wave forcing is correlated with tropical upwelling on both intraseasonal and interannual time scales when transient waves are taken into account, and that tropical ...
متن کاملThe Role of High-Latitude Waves in the Intraseasonal to Seasonal Variability of Tropical Upwelling in the Brewer–Dobson Circulation
The forcing of tropical upwelling in the Brewer–Dobson circulation (BDC) on intraseasonal to seasonal time scales is investigated in integrations of an idealized general circulation model, ECMWF Interim ReAnalysis, and lower-stratospheric temperature measurements from the (Advanced) Microwave Sounding Unit, with a focus on the extended boreal winter season. Enhanced poleward eddy heat fluxes in...
متن کاملMechanisms for Tropical Upwelling in the Stratosphere
The dynamics of the tropical upwelling branch of the stratospheric Brewer–Dobson circulation are examined, with a particular focus on the role of the middle-atmosphere Hadley circulation. Upwelling is examined in terms of both the diabatic circulation and Lagrangian trajectories using a zonally symmetric balance model. The behavior of the wave-driven circulation in the presence of angular momen...
متن کاملThe impact of cirrus clouds on tropical troposphere-to-stratosphere transport
Although it is well known that air enters the stratosphere preferentially through upwelling in the tropics, the exact mechanisms of troposphere-to-stratosphere transport (TST) are still unknown. Previously proposed mechanisms have been found either to be too slow (e.g., clear sky upwelling) to provide agreement with in situ tracer measurements, or to be insufficient in mass flux to act as a maj...
متن کاملThe Steady-State Atmospheric Circulation Response to Climate Change–like Thermal Forcings in a Simple General Circulation Model
The steady-state extratropical atmospheric response to thermal forcing is investigated in a simple atmospheric general circulation model. The thermal forcings qualitatively mimic three key aspects of anthropogenic climate change: warming in the tropical troposphere, cooling in the polar stratosphere, and warming at the polar surface. The principal novel findings are the following: 1) Warming in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011